Rhythm generator using Variational Autoencoder (VAE). Based on M4L.RhythmVAE by Nao Tokui, modded and extended to support simple and compound meter rhythms, with minimal amount of training data. Similarly to RhythmVAE, the goal of R-VAE is the exploration of latent spaces of musical rhythms. Unlike most previous work in rhythm modeling, R-VAE can be trained with small datasets, enabling rapid customization and exploration by individual users. R-VAE employs a data representation that encodes simple and compound meter rhythms. Models and latent space visualizations for R-VAE are available on the project's GitHub page: https://github.com/vigliensoni/R-VAE-models.
Year: 2022
Website: https://github.com/vigliensoni/R-VAE
Input types: MIDI
Output types: MIDI
Output length: 2 bars
AI Technique: VAE
Dataset: "The Future Sample Pack"
License type: GPLv3
Real time:
Free:
Open source:
Checkpoints:
Fine-tune:
Train from scratch:
A spectral approach to audio analysis and generation with neural networks (LSTM). The techniques included here were used as part of the Mezzanine Vs. MAGNet project featured as part of the Barbican's AI: More than Human exhibition It represents ongoing work from researchers at The Creative Computing Institute, UAL and Goldsmiths, University of London. MAGNet trains on the magnitude spectra of acoustic audio signals, and reproduces entirely new magnitude spectra that can be turned back in to sound using phase reconstruction - it's very high quality in terms of audio fidelity. This repo provides a chance for people to train their own models with their own source audio and genreate new sounds. Both given projects are designed to be simple to understand and easy to run.
Year: 2019
Website: https://github.com/Louismac/MAGNet
Input types: Audio
Output types: Audio
Output length: Input length
AI Technique: LSTM
Dataset: N/A
License type: BSD 3-Clause
Real time:
Free:
Open source:
Checkpoints:
Fine-tune:
Train from scratch: